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ABSTRACT
We present the logic CTL.STIT, which is the join of the logic CTL
with a multi-agent strategic stit-logic variant. CTL.STIT subsumes
ATL, and adds expressivity to it that we claim is very important
for using the formalism for multi-agent system verification. We ar-
gue extensively that the extra expressivity is important for extend-
ing ATL to a language for reasoning about norms, strategic games,
knowledge games, conditional strategies, etc. Also we compare the
logic’s suitability for multi-agent system verification with verifica-
tion formalisms based on dynamic logic. We will give a number of
arguments in favor of stit-formalisms. But, which paradigm to use
ultimately depends on what kind of properties we want to verify.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems; I.2.4 [Artificial Intelligence]: Knowledge Rep-
resentation Formalisms and Methods—Modal logic

General Terms
Theory, Verification

Keywords
Logics for agency, Verification of multiagent systems, stit theory,
Reasoning about strategies

1. INTRODUCTION
The logic ATL [4] and its fragment CL [29] have gained quite

some popularity among logicians working on formal logical mod-
els for knowledge representation and verification in multi-agent
systems [20, 25, 3]. However, the kind of reasoning about multi-
agent interaction possible in ATL is rather limited. The main in-
teraction modeled by ATL is the one that can be described by the
slogan "two can do more than one". Axiomatically, this reasoning
is represented by ATL’s central super-additivity axiom. In words,
the axiom says: If A can do ϕ and B can do ψ, together A and B can
do ϕ ∧ ψ. Of course, ATL also has temporal expressivity, borrowed
from CTL [16]. For instance, in the just explained interaction, ϕ and
ψ can be temporal formulas, like that a certain condition will hold
next, at some point in the future (liveness) or henceforth (safety).
This temporal expressivity can be enhanced, for instance, to get
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ATL*, or an even stronger fixed-point (mu-calculus) variant. But
the role of temporal expressivity for system verification is known
since the 90ies. This paper is concerned with the interactions be-
tween agents and the properties of interaction we want to verify.

In the context of MAS-verification, the reasoning represented by
ATL’s super-additivity axiom is relevant for checking reachability
(liveness) properties: is a certain coalition capable of achieving a
certain goal? Do the agents in the coalition need each other to
achieve the goal, or can they already achieve it individually or as
a sub-group? The same questions can be asked for safety proper-
ties: can groups guarantee some property is preserved over time?
Do they need each other to preserve the property? That is, essen-
tially, the kind of reasoning possible in ATL, and indeed, this kind
of reasoning is obviously relevant for multi-agent system verifi-
cation. However, there are much more interaction properties we
might want to verify of MAS-systems. In section 2 we will give
several of them.

Our answer to the aim to extend the expressiveness of ATL in
a way beneficial for verification, comes in the form of a strate-
gic stit-logic that addapts, corrects and simplifies earlier work [12,
11]. For those unfamiliar with the stit-framework: the characters
‘stit’ are an acronym for ‘seeing to it that’. stit-logics [6, 7] orig-
inate in philosophy, and can be described as endogenous logics
of agency, that is, logics of agentive action where actions are not
made explicit in the object language. To be more precise, expres-
sions [A stit : ϕ] of stit-logic stand for ‘agents A see to it that ϕ’,
where ϕ is a (possibly) temporal formula. However, where philoso-
phers write ‘[A stit : ϕ]’, we prefer to write ‘[A stit]ϕ’ to denote
the same notion, to be more in line with standard modal notation.
The main virtue of stit-logics is that, unlike most (if not all) other
logical formalisms, they can express that a choice or action is ac-
tually performed / taken / executed by an agent. In particular, in
the logic of the present paper we can express that a strategy is ex-
ecuted. Within the philosophical community working on the stit-
framework of Belnap [6, 7] and Horty [26], it was an open problem
how to define a suitable notion of strategic stit. The strategic stit-
operator we propose here, is a possible answer. This extends the
expressiveness of logics like ATL in an essential way, since ATL
can only talk about strategic abilities. One of the things our seman-
tics shows, is how we can make the implicit quantifications in the
semantics of the ATL operators explicit in the object language: the
central ATL operators will each be decomposed into three individ-
ual modal quantifiers.

First, in section 2 we explain why ATL lacks important expressive
power for functioning as a verification language. Then, in section
3 we give the semantics of our logic, that combines the temporal
operators of CTL with strategic agency (stit) operators. Section 4
then compares the logic with the logic ATL. In section 5 we discuss
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the next-time fragment of ATL and CTL.STIT by making a com-
parison with the logic XSTIT that assumes a fundamentally differ-
ent semantics. Section 6 discusses possible variations of the logic.
Then in section 7 we give some arguments for using stit rather than
dynamic logic for a logic aimed at expressing properties for multi-
agent system verification. Section 8 concludes.

2. MOTIVATIONS FOR ENHANCING ATL
The first thing to mention here is assumption guarantee reason-

ing [1]. Assumption guarantee reasoning was developed in the con-
text of formal system verification to take advantage of the fact that
systems are often described as build from separate sub-systems.
The idea is that instead of proving the correctness of a system as a
whole, we may switch to proving the behavioral correctness of sub-
systems, modulo assumptions of correct behavior of other compo-
nents. Notably, this kind of reasoning1 is implemented in the well-
known ATL model checker Mocha [5]. In Mocha one can check an
ATL formula on a model defined in terms of a language called ‘re-
active modules’. In this reactive modules language one can encode
that a component (module) behaves in a certain way, thus enabling
model checking under this "guarantee assumption" [23]. However,
model checking is not the same as reasoning. The reactive modules
language is not part of the ATL language, so Mocha does not enable
reasoning modulo the behavior of other components (agents) in one
single logical object language. For that ATL has to be extended. In
stead of encoding fixed behavior of agents in models by means of
the reactive modules language, we need to be able to express that
an agent is acting in a certain way directly in the logical object lan-
guage. In particular we need expressivity of the form ‘coalition C
is currently performing a strategy ensuring ϕ’. If we can express
that in an extension of ATL, we can express assumption-guarantee
properties using an ordinary material conditional. We could ex-
press, for instance, verification properties of the form "if agents 1
ensures the communication channel stays up and running (a safety
property), then agents 2 and 3 can negotiate to reach an agreement
(a liveness property)". It is clear the ‘if’ part of this conditional
cannot be expressed in ATL, since ATL can only talk about abilities
(as in the ‘then’ part of the conditional).

This brings us to the second argument for having to endow ATL
with the expressive capacity to talk about performance of action.
An interaction property following from super-additivity is ‘regu-
larity’. Regularity is a strong property. It says that an agent can
do something only if it can ensure an outcome irrespective of what
the others do (called ‘β-effectivity’ in game theory [28]). Then,
strictly speaking, a skill like opening a door is not something an
agent can do in general. There can be many circumstances that
prevent an agent from opening a door. Somebody else, on the other
side, keeps it closed. Or it is locked. On grounds of examples like
these, one can argue that regularity is much too strong for reason-
ing about abilities. If we agree the central operators of ATL express
group ability (and the consensus is they do), than this is ability of
a very idealized kind. The underlying problem here is well-known
in the area of reasoning about action and change. It is the qual-
ification problem [19]. The qualification problem is the problem
of how to deal, in action descriptions, with the fact that it is very
hard to foresee all the necessary conditions for execution of an ac-
tion and give a sufficient condition. And very often these necessary
conditions concern the question whether or not other agents per-
form certain acts concurrently. In the example of the door, ability

1Where Abadi and Lamport, in their ’95 paper spoke about
‘assumption-guarantee’ reasoning, the researchers developing
Mocha speak of ‘assume-guarantee’ reasoning.

to open it depends on the condition whether or not another agent
keeps it closed. Or in the example of agents 2 and 3 reaching an
agreement, it is the condition of whether or not agent 1 keeps up
the communication channel. So, what one would like to add to the
analysis of ability as represented by ATL, is that in general there are
many conditions under which ability is assumed. And these con-
ditions are often that other agents behave in a ‘normal’ way. This
leads to exactly the same requirement as for the argument based on
assumption guarantee reasoning (we might even say that they are
the same argument, although their origins are quite different): we
need an operator to conditionalize on what strategies other agents
currently perform.

Before giving more arguments for wanting to be able to express
that agents and groups of agents currently perform certain strate-
gies, we want to point to other work on extensions of ATL that
has a related motivation. It has been recognized by several authors
that it would be good to define extensions of ATL where strategies
are not only implicit in the semantics, but are brought more to the
foreground. For instance, in CATL [33] and related formalism [34]
strategies appear as functions σ in the object language. Van Ben-
them has called strategies ‘the unsung heroes of game theory’ [8],
referring to the fact that the operators in languages like ATL only
quantify over strategies, and not give them as object language level
constructs. Van Benthem [32], proposes to use dynamic logic for
that. So, these works share an important characteristic with the
work in this paper: the objective to get rid of the quantifications
over strategies that are hard coded in the semantics of the modal
operators of ATL. However, the present approach does not use dy-
namic logic, but stit-logic to accomplish this. This is more natural,
since the ATL view on action which is based on ‘effectivity’ is the
same as in stit-approaches. In section 7 we will come back to the
point of using stit instead of dynamic logic. A second difference
with the work in this paper is that conditionalization on strategy ex-
ecution (of other agents) is modeled by different means. The strate-
gic stit-operators we use in this paper enable us to conditionalize on
strategy execution simply by using the standard material implica-
tion, which, from a logic perspective, has many advantages. In a
system like CATL, conditionalization is implicit: it is with respect
to the strategy functions inside modal operators: no attempt is made
to define the conditionalization in terms of stand alone modalities
in combination with the material implication.

A third motivation for the extension of ATL we propose orig-
inates in deontic reasoning. We might say that deontic logic is
about reasoning which strategies are ‘good’ and which are ‘bad’
from a normative perspective. However, again, this often depends
on dynamic aspects of the worlds, in particular, on what agents or
others are doing. First, normative modalities are often conditional
on what agents are doing. For instance If you drive your car, you
have to carry your license. The condition is here the execution /
being in process of some action: you driving your car (note that the
condition is not the static one of simply being inside a car; for being
insider a car, but not driving, you do not need a license). Then, to
reason about this conditional obligation, we need to be able to rep-
resent this dynamic condition. The logic we present here enables
us to simply represent this kind of conditional obligations using
Anderson’s reduction: if an agent drives a car and does not carry
a licence, he brings about a violation. Other examples from deon-
tic logic that present a clear motivation concern contrary to duty
(CTD) norms. Consider for example the famous2 dynamic version
of the Chisholm paradox [13]: the gentle murderer [17]. The chal-
lenge here is to model the CTD sentences: "It is forbidden to kill,

2That is, among deontic logicians.
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but if you kill, you have to kill gently". The condition in the CTD
norm is obviously dynamic: it depends on whether or not the agent
performs the act of killing.

Our fourth motivation is a ramification of the objective to find
logics modeling the reasoning underlying solution concepts from
game theory [28]. For modeling this kind of reasoning, again, we
need to reason modulo the moves of other players in the game (as is
also observed in [33]). For instance, for a move to be strictly dom-
inating (a solution concept similar to Savage’s ‘sure thing’ prin-
ciple from decision theory [31]), it must be the best move what-
ever the other agents do. Or for a move to be Nash, it must be a
best response to a best response of the opponents. And, finally, the
reasoning behind iterated elimination of dominated strategies con-
cerns a nested series of conditional assumptions about other agents’
moves.

3. A SEMANTIC CHARACTERIZATION OF
THE LOGIC

In this section we present the formal syntax and semantics of
CTL.STIT. The acronym CTL.STIT refers to the fact that the logic
combines the temporal expressivity of CTL with a stit-logic. The
stit-logic is what Belnap and Horty call a ‘strategic’ stit-logic. This
concerns the fact that choices are not viewed as one-shot actions,
but as extensive form plans possibly involving series of subsequent
choices.

In the syntax we have a operator �ϕ for ‘historical necessity’
(inevitability/settledness) of ϕ, an operator [A sstit]Xϕ for ‘group
A strategically ensures that next ϕ, an operator [A sstit]Gϕ for
‘group A strategically ensures that henceforth ϕ, and an operator
[A sstit](ψUϕ) for ‘group A strategically ensures that at some fu-
ture point ϕ, while ψ holds until then. The acronym sstit comes
from ‘strategically seeing to it’. We can view the syntax of CTL.STIT
as follows. The syntax of CTL.STIT builds on the syntax of CTL
by replacing the CTL’s path quantifiers A and E by the semantically
very similar historical necessity modality � and its dual �, and by
prefixing every temporal operator by a strategic stit-operator.

Definition 3.1 (Syntax). Well-formed formulas of the language
LCTL.STIT are defined by:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | �ϕ |
[A sstit]Xϕ | [A sstit]Gϕ | [A sstit](ϕUϕ)

The p are elements from a countable infinite set of proposi-
tional symbols P, and A is a subset of a finite set of agent names
Ags. We use natural numbers as agent names. We use the nota-
tion A ≡de f Ags \ A to refer to complementary agent sets. We use
ϕ, ψ, . . . to represent arbitrary well-formed formulas. We use the
standard propositional abbreviations, the standard notation for the
duals of modal boxes (that is, diamonds) and the following:

Definition 3.2 (Syntactic abbreviation).

[A sstit]Fϕ ≡de f [A sstit](�Uϕ)

We now go on to define the semantic structures for CTL.STIT.
The main new issue to consider in defining a semantics, is the inter-
pretation of the strategic stit-modalities. For this we need to define
what we mean by a strategy. In the literature, strategies are most
often defined as a mapping from states to choices in states. The
choices can have names (multi-player game models), or not (al-
ternating transition systems). Here we take an equivalent, though
slightly different viewpoint: strategies are sets of system histories.

In semantics for ATL [20] based on game structures (forms) where
choices have names, one has to define an outcome function map-
ping action names to outcomes (histories). This outcome function
is then said to define whether or not a history ‘complies’ with a
strategy expressed in terms of named actions to be executed in sys-
tem states. But, since the names of actions play no role whatsoever
in the object language and axiomatizations of logics like ATL, we
prefer to define strategies directly as sets of histories instead of re-
ferring to them indirectly by using names that play no role in the
logic (this would be different, of course, if we would use a dynamic
logic to talk about the structures). Compliance of a history with a
strategy can then simply be expressed with the membership rela-
tion.

A second feature of the semantics that needs close explanation
are the units of evaluation, or ‘worlds’ as they are called in possible
world semantics. The units of evaluation determine the basic ele-
ments with respect to which we want to assess the truth of formulas.
We explained in section 2 that we aim to have a logic that enables
us (1) to conditionalize on dynamic aspects like other agents ex-
ecuting a certain action or strategy, and (2) to use standard mate-
rial implication for expressing this conditionalization. We can only
achieve this by introducing dynamic elements as units of evalua-
tion. ‘Truth’ is then a property of possible answers to the question
whether or not certain actions or strategies (by certain agents) are
(in the process of) being executed, or not. So we introduce ‘dy-
namic states’ as the units of evaluation. The term ‘dynamic state’
is an oxymoron aiming to point to the dynamic aspect of an agent’s
state. We can perfectly well see the action we are executing, strat-
egy we are taking, or program we are running as a state we are
in. The dynamic states of our semantics take a static system state,
a history and a list of strategies (one for each agent in the sys-
tem) as components. So, the formulas of CTL.STIT are evaluated
against tuples 〈s, h, α1, α2, . . . αn〉, where s is a static system state,
h a history, and α1, α2, . . . αn a strategy profile. Then, the truth of
formulas is evaluated against the background of a current state, a
current history, and a current strategy-profile. If, under this seman-
tics, we want to consider more classical truths that do not depend
on dynamic aspects like histories and strategies, we can use the his-
torical necessity operator �. In particular, if �ϕ holds, ϕ can be said
to hold ‘statically’. In stit-theory, one would say that ϕ is ‘moment
determinate’. We also says that ϕ is ‘settled’3, which refers to the
fact that it is completely independent of any action currently taken
by any agent in the system.

We now first give the definition of the modal frames. Then af-
terwards, we explain the different items of the definition using the
frame visualization in figure 1.

Definition 3.3 (Semantic frames). A frame is a tuple F =
〈S ,H, {sT (x) | x ∈ Ags},RX , {RA | A ⊆ Ags}〉 such that:

1. S is a non-empty set of static multi-agent system states. Ele-
ments of S are denoted s, s′, etc.

2. H is a non-empty set of possible system histories of the form
. . . s−2, s−1, s0, s1, s2, . . . with sx ∈ S for x ∈ Z. Elements of H
are denoted h, h′, etc. For s, t appearing on h we write s <h t
in case s appears strictly before t on the history h.

3Settledness does not necessarily mean that a property is always
true in the future (as often thought). Settledness may, for instance,
apply to the condition that ϕ occurs ‘some’ time in the future, or to
some other temporal property. So, settledness is a universal quan-
tification over the branching dimension of time, and not over the
dimension of duration.
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Figure 1: Visualization of a strategy profile in a partial two
agent CTL.STIT frame

3. sT (x) yields for each x ∈ Ags a non-empty set of strategies.
Strategies are non-empty sets of system histories. For agent
1, the strategies sT (1) are denoted α1, β1, etc. A strategy
profile4 relative to sT (x) is a list of strategies α1, α2, . . . αn,
where {1, 2, . . . , n} = Ags and αx ∈ sT (x) for any x. For
strategy profiles we will use the vector notation ‘�α’ when we
need to be more concise. For any strategy profile α1, α2, . . . αn

relative to sT (x) and any s ∈ S :

(a) there is an h ∈ H with s on h and ∀x ∈ Ags, h ∈ αx

(b) if s on h and ∀x ∈ Ags, h ∈ αx and if s on h′ and
∀x ∈ Ags, h′ ∈ αx then h = h′

4. Dynamic states are tuples 〈s, h, α1, α2, . . . αn〉, where:

(a) s ∈ S , h ∈ H, and α1, α2, . . . αn is a strategy profile
relative to sT (x)

(b) s appears on h

(c) ∀x ∈ Ags, h ∈ αx

5. RX is a ‘next-state’ relation over dynamic states. That is,
〈s, h, α1, α2, . . . αn〉RX〈s′, h′, βa, βb, . . . βk〉 only if h = h′, ∀x ∈
Ags, αx = βx, and s′ is the successor of s on the history h.

6. The RA are ‘effectivity’ equivalence classes over dynamic
states such that 〈s, h, α1, α2, . . . αn〉RA〈s′, h′, βa, βb, . . . βk〉 if
and only if s = s′, and ∀x ∈ A, αx = βx.

7. RX ◦ R∅ ⊆ R∅ ◦ RX

Items 1, 2, 3 and 4 define the structure of the units of evalua-
tion: the dynamic states. System histories are ordered sets of static
system states, strategies are sets of system histories and a strategy
profile is a choice of strategy for each agent in the system. Figure
1 visualizes a (partial) frame and a strategy profile in it, from the
viewpoint of state s0. Colons that are grey represent profile choices
of agent 1, rows that are grey represent profile choices of agent 2.
No s2-profile choice is depicted for agent 1, because we only look

4In the game forms of game theory strategy profiles are refereed to
by means of names associated with the choices of agents in system
states. Here we abstract from names of choices, as explained.

at the profile from the perspective of s0, and in this profile, for
agent 1, s2 is not a reachable state from s0.

Condition 3(a) ensures that intersections of strategies of different
agents, as seen from a particular state s, are never empty. This im-
plements the stit-requirement of independence of agency (no agent
can choose a strategy that instantaneously affects which strategies
are in the strategy repertoire of other agents).

Conditions 3(a) and 3(b) ensure that through any static state
there is exactly one history complying to all strategies of a strat-
egy profile. This reflects the idea, also assumed in ATL and CL,
that a choice of strategy for each agent in the system determines
the next static state. This means that, strictly speaking, we do not
have to introduce h here as an independent element of the units of
evaluation, since we can define it as the intersection of the strate-
gies in the profile. The reason that we do this anyway is that in
section 6 we want to discuss the possibility to drop condition 3(b)
and allow for non-determinism introduced by the agents’ environ-
ment. In figure 1 the bundle of histories Hb3 through the darker
grey little squares is the bundle of histories containing the unique
s0-history determined by the intersection of the strategies of agents
1 and 2 in the profile.

Item 4 defines the basic units of evaluation. Note that the dif-
ference with classical multi-agent or group stit-models [7] is that
states are not partitioned by one shot actions, but by strategies. This
generalization is the essential step for defining our strategic version
of the stit-operator.

Item 5 defines the relation RX to be a ‘next-state’ relation over
dynamic states. Note that system states may occur more than ones
on a system history. A system might even stay in the same state
forever. So, a system state should not be confused with a ‘moment’.
Only if we consider the occurrence of a system state at some point
on the history, we may think of this occurrence as a moment.

Item 6 says that RA reaches all dynamic states that only deviate
from the current dynamic state in the sense that agents not among
A perform a choice different from the current one. This reflects
the basic idea of alternating time temporal logic (ATL), saying that
acting or choosing is ensuring a condition irrespective of what other
agents do or choose.

Condition 7 enforces that the dynamic states based on the next
static state originate from a subset of the dynamic states based on
the current static state. In figure 1, when going a step forward from
s0, for instance with the grey profile as the current profile, the alter-
native profiles we can consider from s1 are a subset of the profiles
we could consider as alternatives in s0. This is because in s0 agent
1 still has an alternative leading to s2 that he has lost once arrived
at s1.

Now we are ready to define the formal semantics of the language
LCTL.STIT. The semantics is multi-dimensional, and the truth condi-
tions are quite standard. First we define models based on the frames
of the previous definition.

Definition 3.4 (Models). A frame F = 〈S ,H, {sT (a) | a ∈
Ags},RX , {RA | A ⊆ Ags}〉 is extended to a modelM = 〈S ,H, {sT (a) |
a ∈ Ags},RX , {RA | A ⊆ Ags}, π〉 by adding a valuation π of atomic
propositions:

• π is a valuation function π : P −→ 2S×H×sT (a) assigning to
each atomic proposition the set of dynamic states in which
they are true.

Note that truth assignments to propositional atoms may be dif-
ferent for different dynamic states based on the same static system
state. This raises questions. We explained that we want truth to be
relative to dynamic features of the world to enable conditionaliza-
tion using the standard material implication. This is perfectly all
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right for formulas expressing dynamic features of the system, that
is for all formulas containing modalities. However, for formulas
containing no modalities at all, i.e., the formulas expressing static
features of the system in the current system state, we might de-
fend a different opinion. For such formulas, let’s denote them by
meta-variables π, one would expect that they have the same truth
evaluation for any dynamic state based on the same static state. We
could accomplish this by giving an alternative definition of models
relative to the frames of definition 3.3. In the definition of mod-
els we can impose the constraint that all dynamic states sharing
the same static states have identical assignments of truth values to
propositional atoms. This would then result in a validity π → �π,
but, only for the modality-free formulas π. So, this would lead us
to a setting that is slightly non-standard from a modal logic per-
spective. Although we think it is perfectly possible to do this, we
prefer not to pursue this variation on the semantics here, because
we do not think it adds an interesting or essential element to the
reasoning we aim to capture with the logic. Furthermore, the prop-
erty π → �π would only be based on the unwarranted idea that
histories through a static system state actually all somehow ‘share’
this state. There is no need to assume that. For evaluating static
properties, we simply only look at the present static system state
compatible with the actual dynamic state, and for evaluating dy-
namic properties we consider all dynamic states reachable from the
current dynamic state.

Definition 3.5 (Truth, validity, logic). TruthM, 〈s, h, �α〉 |= ϕ,
of a CTL.STIT-formula ϕ in a dynamic state 〈s, h, �α〉 of a model
M = 〈S ,H, {sT (a) | a ∈ Ags},RX , {RA | A ⊆ Ags}, π〉 is defined as
(suppressing the model denotation ‘M’):

〈s, h, �α〉 |= p ⇔ 〈s, h, �α〉 ∈ π(p)
〈s, h, �α〉 |= ¬ϕ ⇔ not 〈s, h, �α〉 |= ϕ
〈s, h, �α〉 |= ϕ ∧ ψ ⇔ 〈s, h, �α〉 |= ϕ and 〈s, h, �α〉 |= ψ
〈s, h, �α〉 |= �ϕ ⇔ if 〈s, h, �α〉R∅〈s, h′, �β〉 then

〈s, h′, �β〉 |= ϕ
〈s, h, �α〉 |= [A sstit]Xϕ ⇔ for all h′, �β such that

〈s, h, �α〉RA〈s, h′, �β〉
and for all s′ such that
〈s, h′, �β〉RX〈s′, h′, �β〉
it holds that 〈s′, h′, �β〉 |= ϕ

〈s, h, �α〉 |= [A sstit]Gϕ ⇔ for all h′, �β such that
〈s, h, �α〉RA〈s, h′, �β〉
and for all s′ such that
s ≤h′ s′

it holds that 〈s′, h′, �β〉 |= ϕ
〈s, h, �α〉 |= [A sstit](ψUϕ) ⇔ for all h′, �β such that

〈s, h, �α〉RA〈s, h′, �β〉 it holds that
∃t on h′ with s ≤h′ t such that
(1) 〈t, h′, �β〉 |= ϕ and
(2) ∀r with s ≤h′ r <h′ t we have
〈r, h′, �β〉 |= ψ

Validity on a CTL.STIT-model M is defined as truth in all dy-
namic states of the CTL.STIT-model. General validity of a formula
ϕ is defined as validity on all possible CTL.STIT-models. The logic
CTL.STIT is the subset of all general validities ofLCTL.STIT over the
class of CTL.STIT-models.

4. COMPARING CTL.STIT AND ATL
In this section we show that CTL.STIT embeds ATL [4], and

thus also CTL [16] and CL [29]. Also we mention validities for
CTL.STIT that do not hold for ATL.

Definition 4.1 (Mapping ATL to CTL.STIT). We define a map-
ping from ATL modalities to CTL.STIT modalities according to:
〈〈A〉〉Xϕ ≡de f �[A sstit]Xϕ,
〈〈A〉〉Gϕ ≡de f �[A sstit]Gϕ,
〈〈A〉〉(ϕUψ) ≡de f �[A sstit](ϕUψ).
Modality-free formula parts of ATL formulas are mapped to identi-
cal modality-free formula parts of CTL.STIT formulas.

Theorem 4.1. The mapping of definition 4.1 embeds the logic
ATL in the logic CTL.STIT.

We will now discuss the proof of this theorem. We do not give
the details of the proof, because, among other things, we would
need to present the more classical semantics of ATL, which takes
up too much space for the purposes of this paper. What we need
to prove is that the mapping of definition 4.1 preserves the logic in
both directions. Now, showing that the mapping preserves validi-
ties in one direction is equivalent with showing that the mapping
preserves satisfiability in the opposite direction. Then, a straight-
forward strategy to show the embedding is first to show that the
theorems following from the known axiomatization of ATL, after
translation using the mapping, are all valid in the semantics of
CTL.STIT, and second to show that this same direction of the map-
ping also preserves satisfiability.

Proposition 4.2. The following formulas, resulting from apply-
ing the mapping of definition 4.1 to the ATL axiomatization in [21]
are valid in CTL.STIT:

(Live) �〈A sstit〉X�
(Term) �[A sstit]X�
(Ags-Max) �〈∅ sstit〉Xϕ→ �([Ags sstit]Xϕ
(SA) �[A sstit]Xϕ ∧ �[B sstit]Xψ→

�([A sstit]Xϕ ∧ [B sstit]Xψ) for A ∩ B = ∅
(FPG) �[A sstit]Gϕ↔

ϕ ∧ �[A sstit]X�[A sstit]Gϕ
(GFPG) �[∅ sstit]G(χ→ (ϕ ∧ �[A sstit]Xχ))→

�[∅ sstit]G(χ→ �[A sstit]Gϕ)
(FPU) �[A sstit](ϕUψ)↔

¬ψ→ (ϕ ∧ �[A sstit]X�[A sstit](ϕUψ))
(LFPU) �[∅ sstit]G((¬ϕ→ (ψ ∧ �[A sstit]Xχ))→ χ)→

�[∅ sstit]G(�[A sstit](ψUϕ)→ χ)
Also the translation of the Hilbert style derivation rules of the

axiomatization in [21] results in sound rules for CTL.STIT.
This establishes one direction of the proof for an embedding. We

might call this direction the ‘completeness’ direction for the ATL to
CTL.STIT translation of definition 4.1, since it says that everything
that is valid in ATL, is valid in the fragment of the CTL.STIT lan-
guage we are mapping to. But we also need to establish the other
direction, the ‘soundness’ direction. We propose to do this by prov-
ing that also satisfiability is preserved in the mapping from ATL to
the language fragment of CTL.STIT. We are not going to give the
mapping of ATL models to CTL.STIT models, since we have not
given the classical semantics for ATL. But readers familiar with
ATL can picture for themselves that any ‘[ATL formula, satisfy-
ing ATL structure]’-pair can be mapped quite straightforwardly to
a ‘[CTL.STIT formula, satisfying CTL.STIT structure]’-pair. The
mapping of formulas is, of course, again according to definition
4.1, and the mapping of models is not too difficult to picture (in
the originating classical ATL structure, leave out all the names for
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choices, etc., and focus on the histories and strategies in terms of
sets of histories). Preservation of satisfiability of arbitrary ATL for-
mulas can then be proven by induction over the formula structure.

The ensuing question is what the logic is of the CTL.STIT-part
that extends ATL. A definite answer in the form of a complete ax-
iomatization of CTL.STIT we cannot give yet, but below we list
some validities that are not in the ATL fragment.

Proposition 4.3. The following are validities of CTL.STIT that
are not in the ATL fragment determined by definition 4.1:

the S5 validities for �
the KD validities for each [A sstit]X

(Det) 〈Ags sstit〉Xϕ→ [Ags sstit]Xϕ
(C-Mon’) [A sstit]Xϕ→ [A ∪ B sstit]Xϕ
(∅-SettX) [∅ sstit]Xϕ↔ �[Ags sstit]Xϕ
(DS-incl) �[Ags sstit]Xϕ→ [Ags sstit]X�ϕ

5. COMPARING CTL.STIT AND XSTIT
In this section we investigate stit-properties of the logic. In par-

ticular, we make the comparison with the logic XSTIT as first pre-
sented in [10] whose main distinguishing feature is that stit-actions
as represented by the central XSTIT modality [A xstit]ϕ take effect
in next states. It is rather natural then to suspect that XSTIT is the
CTL.STIT fragment associated with the definition [A xstit]ϕ ≡de f

[A sstit]Xϕ. However, that is not the case.

Proposition 5.1. The logic XSTIT [10] is not the fragment of
the logic CTL.STIT determined by [A xstit]ϕ ≡de f [A sstit]Xϕ.

A very simple reason for the translation not to work is that in a
recent update of the XSTIT logic, the X operator is also a stand-
alone operator. However, there are more fundamental and more in-
teresting semantic reasons. This first is that in XSTIT (contrary to
what is claimed in [10]) we do not have the Ags-maximality prop-
erty that we have in CTL.STIT, ATL and CL. In our semantics, and
in ATL, Ags-maximality is ensured by condition 3(b) in definition
3.4. In section 6 on variations on the logic, we will briefly discuss
dropping this condition. Ags-maximality is an interesting property
for several reasons. Note first that the axiom for Ags-maximality
as given in proposition 4.2 is not in Sahlqvist form [9]. Worse, it
is a version of the well-known McKinsey formula, that is not first-
order definable. Roughly, Ags-maximality says the following: if
some dynamic state is possible as such, that is, if even the empty
set of agents has no power to exclude it from occurring, then the
complete set of agents Ags actually has a winning strategy for that
state. XSTIT does not satisfy this property, because (in its updated
recent version) it allows for non-determinism even for the actions
of Ags.

Another reason for the mismatch between XSTIT and the next-
time fragment of CTL.STIT concerns the stit-property of ‘no choice
between undivided histories’. XSTIT satisfies this property, result-
ing in, for instance, the XSTIT validity [A xstit]ϕ→ [Ags xstit]�ϕ.
Translating this, via the proposed translation, to CTL.STIT yields
[A sstit]Xϕ → [Ags sstit]X�ϕ. However, this is not valid in
CTL.STIT. And it is not valid for an interesting reason, pointing
to an oddity of the ATL and CTL.STIT semantics for the next oper-
ator. As said, in XSTIT the property captures the idea of ‘no choice
between undivided histories’ that says that if an agent has a choice
between two strategies, it cannot be the case that there are system
histories in these two strategies that come together in some future
state. However, in ATL and CTL.STIT this is not the case. in ATL
and CTL.STIT agents can choose between histories that are undi-
vided in next states. The point is that the choice for performing a

particular strategy not only fixes a local choice for the current static
state, but also fixes all local choices for all future static states. This
means that in ATL and CTL.STIT the histories selected for the next
state are a subset of the histories that would result from a strictly
local choice, as in the semantics of XSTIT.

6. VARIATIONS ON THE LOGIC
One of the merits of the fairly standard modal semantics we gave

is that it enables us to think freely about strengthening or weak-
ening the logic using familiar techniques from modal logic. One
option we already pointed to in section 5 is to drop the property of
maximality. This corresponds to dropping the Ags-maximality ax-
iom in definition 4.2, and dropping condition 3(b) of the frames of
definition 3.4. This more liberal setting allows for non-determinism
at the level of Ags-choices. This leaves room for the environment
of the agents in Ags to decide: the environment determines which
of the histories admitted by the choices of Ags is the actual history.

Another interesting variation to pursue is to play around with
the capabilities of the empty set of agents. First we need to have
some idea about what it is that this empty set represents. In our
view the empty set should not be identified with the environment.
As said, we view the environment as a ‘force’ that may decide on
non-determinism due to lack of control by Ags. Under that inter-
pretation, the environment is like an extra agent that if it would
be added to Ags, would again ensure Ags-maximality. Properties
like C-Mon’ tell us that in this logic the empty set cannot be seen
as an ‘extra agent’ in that sense. But it can be seen as an extra
agent in another sense. More in particular, we may adopt the view
that the empty set of agents can be identified with the system de-
signer. From C-Mon’ it follows that whatever the empty set of
agents does, is done by all the groups (including singleton groups)
inhabiting the system. However, this does not exclude that we en-
dow the empty set with real choices (in the sense that there are also
alternatives). These choices would than form the constraints within
which the agents inhabiting the system are free to choose. So, we
could see these choices as design choices for the multi-agent sys-
tem as a whole. How to make these ideas concrete in terms of
logical properties is material for future research.

A natural direction for strengthening the logic is to separate the
agency operators from the temporal CTL-operators, and define the
semantics and axiomatics for these. The present semantics would
enable us to do so quit straightforwardly. The problem with this is
that the logic of the stand alone agency properties we then get is a
product logic [24] (see the product-like structure in condition 7 of
definition 3.4). And for three or more dimensions (here agents) S5
product logics are not finitely axiomatizable and undecidable. Be-
cause of the syntactic coupling of agency operators with temporal
operators, our logic is not a product. Actually, due to the coupling,
what we have is a variant on so called ‘flow-products’ [18]. Flow
products avoid the bad meta-logical properties of products.

Finally, we come back to assumption guarantee-reasoning, as
explained in section 2. The central problem of the original paper
[2] concerning this type of reasoning is how to ‘conjoin’ behavior
specification under the assumptions under which the components
of the system are proven to behave correctly. The interesting prob-
lem emerging there is whether or not we can conjoin two specifi-
cations that have mutually been proven to behave correct modulo
each other’s behavior. So if component A can ensure Fϕ given
that B ensures Gψ, and component B can ensure Gψ given that A
ensures Fϕ, can we conclude, for instance, that A ∪ B can ensure
F(ϕ ∧ ψ)? If we translate this question to the multi-agent system
setting, and, more in particular, to the logic presented in this pa-
per, we come to the question of whether or not the following strong
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super-additivity axiom holds.

Definition 6.1 (Strong super-additivity).

(SSA) ([B sstit]Xψ→ �[A sstit]Xϕ∧
[A sstit]Xϕ→ �[B sstit]Xψ)→
�([A sstit]Xϕ ∧ [B sstit]Xψ) for A ∩ B = ∅

The property is stronger than super-additivity (SA); the antecedent
of the central implication is weaker, because the two ability expres-
sions in it are made conditional on each other. It is not difficult
to see that this property is not obeyed by our system. A fairly
simple counter model can be made where all of [B sstit]Xψ and
[A sstit]Xϕ and �([A sstit]Xϕ∧ [B sstit]Xψ) and �[A sstit]Xϕ and
�[A sstit]Xϕ are false (making that the central implication is not
obeyed thus yielding that the whole formula is false). However, on
intuitive grounds, there is something to say for adding this property
to the system. For now, we leave the issue for further research.

7. DYANAMIC LOGIC VERSUS STIT
We want to briefly address the question why we do not pursue a

logical verification language that is based on dynamic logic. This
requires some introduction, partly historical.

A multi-agent system is a computational system. Any computa-
tional system can be considered at many different abstraction levels
of description. At the lowest level there is the machine it runs on.
Just on top of that the machine code. Yet a level higher, maybe
some higher order programming language, and so on. In case of a
multi-agent system, on the higher end of this spectrum there are the
believes, goals, intentions, actions in terms of which we describe
the agent system (Dennet’s intentional stance [15]).

Now, dynamic logic [30, 22] was designed for reasoning about
programs, which in the hierarchy of abstraction described above is
significantly below the highest level of description in terms of be-
lieves, goals, intentions, actions. Through the years, researchers
have claimed that we could combine both levels of abstraction in
one system, one logic. Examples are the KARO-framework [27]
and the system of Cohen and Levesque [14], that aim to combine
BDI notions with dynamic logic (in Cohen and Levesque’s case all
encoded in first-order logic). Whether or not that is a good idea,
depends on the goals of proposed logics. If one wants to reason,
within the same logic, about both (1) programming features like
loop-invariants and weakest preconditions, and (2) high level BDI
concepts, then this is indeed the best way to go. However, another
approach, one that we would like to advocate here, is to design sep-
arate logics for separate levels of abstraction. Relations between
logics for separate abstraction levels can than be laid by develop-
ing representation theorems. And here is where we think stit-theory
can contribute to the picture. For describing the dynamics and ac-
tions on the higher BDI-level of abstraction, stit-theory seems more
suited than dynamic logic. After all, when describing actions of
agents at higher levels of abstraction, we do not use while loops, if,
then else constructions, or test operators. More likely we describe
an agents strategies in terms of a finite list of condition-actions
pairs, of the form { if p1 do q1, if p2 do q2, . . . , if pn do qn}. In the
strategic stit-logic of the present paper we express that as:

[A sstit]G(
(p1 → [A sstit]Xq1)∧
...
(pn → [A sstit]Xqn))

Note that what we really need a strategic stit-logic to be able to
express this. Only in a strategic version of stit it makes sense to

use the ‘G’ operator inside the stit-modality. It reflects that agents
might have to perform different actions in different future states
to realize the right outcome (the right system histories). And in-
deed, what actions the group A has to perform in which states is
expressed by the finite list of condition-action pairs. Note also that
we can also define strategies where a choice depends not only on
the condition in the present state, but on the conditions in a series
of states and the actions leading from one to the other. Finally, note
that we can represent partial strategies in this was: by following the
strategy starting from a certain state, we do not necessarily reach
states for which an action is specified in the list of condition-action
pairs.

Now readers familiar with dynamic logic and the papers de-
scribing strategies in terms of process models [32] will say that
the representation dynamic logic looks rather similar. That is no
surprise. Let us think about the relation between action descrip-
tions in stit and in dynamic in a more systematic way. We might
say that the basic modalities of dynamic logic are [a]ϕ, with a an
atomic action name and ϕ a guaranteed postcondition of the action.
We can increase expressivity of this basic modality by consider-
ing a fixed point semantics over the basic modalities, and allow
for formulas like νZ. ϕ ∧ [a][b]Z, which in the notation of dy-
namic logic is written as [(a; b)∗]ϕ. Now, to compare this with
stit-type formalisms, we can take as the central modality for these
formalisms something of the form �[A stit]Xϕ. The difference
with the dynamic logic view is that inside the box there is a group
of agents instead of an action name. Like for the basic dynamic
logic modality, we can define a fixed point semantic with respect
to the basic stit-modality. We then get, for instance formulas like
νZ. ϕ ∧ �[A stit]X(a ∧ �[A stit]X(b ∧ Z), which translates to the
formula ϕ∧�[A sstit]G(ϕ→ �[A sstit]X(a∧�[A sstit]X(b∧ ϕ)))
of CTL.STIT. The point is that this stit-formula seems to express
the same kind of information as the dynamic logic formula. The
only difference being that the action name is not inside the modal
box, but transformed to a proposition that is taken to be the effect
of the action. This reflects the core difference between the views on
action of both formalisms: in dynamic logic, the action is identified
with its name, in stit with its effect. The advantage of the stit-view
however, is that the modal box can be ‘filled’ with agent names.
Agent interaction properties can then be studied in terms of multi-
modal characterization axioms (think about super-additivity, coali-
tion monotony, etc.). However, if we leave the action (strategy)
names inside the modal boxes, we cannot do that, which explains
why until now nobody has come up with a satisfactory theory of
agency in dynamic logic. The message is thus that by identifying
actions with their effects, as in stit, we do not give up expressivity,
while we gain that we can study agent interaction straightforwardly
using standard modal techniques.

This is not the whole story. If we accept the above arguments
and use stit-like formalism as specification languages, we still have
the problem that for verification, we have to relate to real programs
that are specified in terms of the names of basic programming oper-
ations. So, actually, we have to make the step from stit-like formu-
las, stating multi-agent system interaction requirements on higher
levels of abstraction, to dynamic logic like formalism aimed at de-
scribing properties of the programs. We need representation theo-
ries for that. The step described above, where we relate the effect
description of (joint) actions, to names of basic steps in a program
would be a central step in such a representation theorem. We leave
this issue to future research.

8. CONCLUSION
This papers defines the logic CTL.STIT, which is the join of the
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logic CTL with a strategic stit-logic. The popular logic ATL is sub-
sumed. We argue that the additional expressive power of CTL.STIT
enables us to express properties that are important for using this
type of logics for multi-agent system verification. The semantics
for the logic is of a new kind, and more standard than other seman-
tics for ATL. The advantage is that we can more easily adapt the
logic to different interaction properties. As one example of such a
property we mentioned strong super-additivity. Finally, we discuss
the similarities and differences with verification languages based
on dynamic logic. The paper does not discuss how the present
framework provides an excellent setting for investigating interac-
tions with motivational modalities like intentions, desires and obli-
gations, and informational modalities, like knowledge and belief.
This is left for future research.
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